3.115 \(\int \frac{x^4 (a+b \cosh ^{-1}(c x))}{(d-c^2 d x^2)^{3/2}} \, dx\)

Optimal. Leaf size=226 \[ \frac{3 x \sqrt{d-c^2 d x^2} \left (a+b \cosh ^{-1}(c x)\right )}{2 c^4 d^2}+\frac{x^3 \left (a+b \cosh ^{-1}(c x)\right )}{c^2 d \sqrt{d-c^2 d x^2}}-\frac{3 \sqrt{c x-1} \sqrt{c x+1} \left (a+b \cosh ^{-1}(c x)\right )^2}{4 b c^5 d \sqrt{d-c^2 d x^2}}+\frac{b x^2 \sqrt{c x-1} \sqrt{c x+1}}{4 c^3 d \sqrt{d-c^2 d x^2}}-\frac{b \sqrt{c x-1} \sqrt{c x+1} \log \left (1-c^2 x^2\right )}{2 c^5 d \sqrt{d-c^2 d x^2}} \]

[Out]

(b*x^2*Sqrt[-1 + c*x]*Sqrt[1 + c*x])/(4*c^3*d*Sqrt[d - c^2*d*x^2]) + (x^3*(a + b*ArcCosh[c*x]))/(c^2*d*Sqrt[d
- c^2*d*x^2]) + (3*x*Sqrt[d - c^2*d*x^2]*(a + b*ArcCosh[c*x]))/(2*c^4*d^2) - (3*Sqrt[-1 + c*x]*Sqrt[1 + c*x]*(
a + b*ArcCosh[c*x])^2)/(4*b*c^5*d*Sqrt[d - c^2*d*x^2]) - (b*Sqrt[-1 + c*x]*Sqrt[1 + c*x]*Log[1 - c^2*x^2])/(2*
c^5*d*Sqrt[d - c^2*d*x^2])

________________________________________________________________________________________

Rubi [A]  time = 0.680918, antiderivative size = 237, normalized size of antiderivative = 1.05, number of steps used = 8, number of rules used = 7, integrand size = 27, \(\frac{\text{number of rules}}{\text{integrand size}}\) = 0.259, Rules used = {5798, 5752, 5759, 5676, 30, 266, 43} \[ \frac{x^3 \left (a+b \cosh ^{-1}(c x)\right )}{c^2 d \sqrt{d-c^2 d x^2}}+\frac{3 x (1-c x) (c x+1) \left (a+b \cosh ^{-1}(c x)\right )}{2 c^4 d \sqrt{d-c^2 d x^2}}-\frac{3 \sqrt{c x-1} \sqrt{c x+1} \left (a+b \cosh ^{-1}(c x)\right )^2}{4 b c^5 d \sqrt{d-c^2 d x^2}}+\frac{b x^2 \sqrt{c x-1} \sqrt{c x+1}}{4 c^3 d \sqrt{d-c^2 d x^2}}-\frac{b \sqrt{c x-1} \sqrt{c x+1} \log \left (1-c^2 x^2\right )}{2 c^5 d \sqrt{d-c^2 d x^2}} \]

Antiderivative was successfully verified.

[In]

Int[(x^4*(a + b*ArcCosh[c*x]))/(d - c^2*d*x^2)^(3/2),x]

[Out]

(b*x^2*Sqrt[-1 + c*x]*Sqrt[1 + c*x])/(4*c^3*d*Sqrt[d - c^2*d*x^2]) + (x^3*(a + b*ArcCosh[c*x]))/(c^2*d*Sqrt[d
- c^2*d*x^2]) + (3*x*(1 - c*x)*(1 + c*x)*(a + b*ArcCosh[c*x]))/(2*c^4*d*Sqrt[d - c^2*d*x^2]) - (3*Sqrt[-1 + c*
x]*Sqrt[1 + c*x]*(a + b*ArcCosh[c*x])^2)/(4*b*c^5*d*Sqrt[d - c^2*d*x^2]) - (b*Sqrt[-1 + c*x]*Sqrt[1 + c*x]*Log
[1 - c^2*x^2])/(2*c^5*d*Sqrt[d - c^2*d*x^2])

Rule 5798

Int[((a_.) + ArcCosh[(c_.)*(x_)]*(b_.))^(n_.)*((f_.)*(x_))^(m_.)*((d_) + (e_.)*(x_)^2)^(p_), x_Symbol] :> Dist
[((-d)^IntPart[p]*(d + e*x^2)^FracPart[p])/((1 + c*x)^FracPart[p]*(-1 + c*x)^FracPart[p]), Int[(f*x)^m*(1 + c*
x)^p*(-1 + c*x)^p*(a + b*ArcCosh[c*x])^n, x], x] /; FreeQ[{a, b, c, d, e, f, m, n, p}, x] && EqQ[c^2*d + e, 0]
 &&  !IntegerQ[p]

Rule 5752

Int[((a_.) + ArcCosh[(c_.)*(x_)]*(b_.))^(n_.)*((f_.)*(x_))^(m_)*((d1_) + (e1_.)*(x_))^(p_)*((d2_) + (e2_.)*(x_
))^(p_), x_Symbol] :> Simp[(f*(f*x)^(m - 1)*(d1 + e1*x)^(p + 1)*(d2 + e2*x)^(p + 1)*(a + b*ArcCosh[c*x])^n)/(2
*e1*e2*(p + 1)), x] + (-Dist[(f^2*(m - 1))/(2*e1*e2*(p + 1)), Int[(f*x)^(m - 2)*(d1 + e1*x)^(p + 1)*(d2 + e2*x
)^(p + 1)*(a + b*ArcCosh[c*x])^n, x], x] - Dist[(b*f*n*(-(d1*d2))^IntPart[p]*(d1 + e1*x)^FracPart[p]*(d2 + e2*
x)^FracPart[p])/(2*c*(p + 1)*(1 + c*x)^FracPart[p]*(-1 + c*x)^FracPart[p]), Int[(f*x)^(m - 1)*(-1 + c^2*x^2)^(
p + 1/2)*(a + b*ArcCosh[c*x])^(n - 1), x], x]) /; FreeQ[{a, b, c, d1, e1, d2, e2, f}, x] && EqQ[e1 - c*d1, 0]
&& EqQ[e2 + c*d2, 0] && GtQ[n, 0] && LtQ[p, -1] && GtQ[m, 1] && IntegerQ[p + 1/2]

Rule 5759

Int[(((a_.) + ArcCosh[(c_.)*(x_)]*(b_.))^(n_.)*((f_.)*(x_))^(m_))/(Sqrt[(d1_) + (e1_.)*(x_)]*Sqrt[(d2_) + (e2_
.)*(x_)]), x_Symbol] :> Simp[(f*(f*x)^(m - 1)*Sqrt[d1 + e1*x]*Sqrt[d2 + e2*x]*(a + b*ArcCosh[c*x])^n)/(e1*e2*m
), x] + (Dist[(f^2*(m - 1))/(c^2*m), Int[((f*x)^(m - 2)*(a + b*ArcCosh[c*x])^n)/(Sqrt[d1 + e1*x]*Sqrt[d2 + e2*
x]), x], x] + Dist[(b*f*n*Sqrt[d1 + e1*x]*Sqrt[d2 + e2*x])/(c*d1*d2*m*Sqrt[1 + c*x]*Sqrt[-1 + c*x]), Int[(f*x)
^(m - 1)*(a + b*ArcCosh[c*x])^(n - 1), x], x]) /; FreeQ[{a, b, c, d1, e1, d2, e2, f}, x] && EqQ[e1 - c*d1, 0]
&& EqQ[e2 + c*d2, 0] && GtQ[n, 0] && GtQ[m, 1] && IntegerQ[m]

Rule 5676

Int[((a_.) + ArcCosh[(c_.)*(x_)]*(b_.))^(n_.)/(Sqrt[(d1_) + (e1_.)*(x_)]*Sqrt[(d2_) + (e2_.)*(x_)]), x_Symbol]
 :> Simp[(a + b*ArcCosh[c*x])^(n + 1)/(b*c*Sqrt[-(d1*d2)]*(n + 1)), x] /; FreeQ[{a, b, c, d1, e1, d2, e2, n},
x] && EqQ[e1, c*d1] && EqQ[e2, -(c*d2)] && GtQ[d1, 0] && LtQ[d2, 0] && NeQ[n, -1]

Rule 30

Int[(x_)^(m_.), x_Symbol] :> Simp[x^(m + 1)/(m + 1), x] /; FreeQ[m, x] && NeQ[m, -1]

Rule 266

Int[(x_)^(m_.)*((a_) + (b_.)*(x_)^(n_))^(p_), x_Symbol] :> Dist[1/n, Subst[Int[x^(Simplify[(m + 1)/n] - 1)*(a
+ b*x)^p, x], x, x^n], x] /; FreeQ[{a, b, m, n, p}, x] && IntegerQ[Simplify[(m + 1)/n]]

Rule 43

Int[((a_.) + (b_.)*(x_))^(m_.)*((c_.) + (d_.)*(x_))^(n_.), x_Symbol] :> Int[ExpandIntegrand[(a + b*x)^m*(c + d
*x)^n, x], x] /; FreeQ[{a, b, c, d, n}, x] && NeQ[b*c - a*d, 0] && IGtQ[m, 0] && ( !IntegerQ[n] || (EqQ[c, 0]
&& LeQ[7*m + 4*n + 4, 0]) || LtQ[9*m + 5*(n + 1), 0] || GtQ[m + n + 2, 0])

Rubi steps

\begin{align*} \int \frac{x^4 \left (a+b \cosh ^{-1}(c x)\right )}{\left (d-c^2 d x^2\right )^{3/2}} \, dx &=-\frac{\left (\sqrt{-1+c x} \sqrt{1+c x}\right ) \int \frac{x^4 \left (a+b \cosh ^{-1}(c x)\right )}{(-1+c x)^{3/2} (1+c x)^{3/2}} \, dx}{d \sqrt{d-c^2 d x^2}}\\ &=\frac{x^3 \left (a+b \cosh ^{-1}(c x)\right )}{c^2 d \sqrt{d-c^2 d x^2}}-\frac{\left (3 \sqrt{-1+c x} \sqrt{1+c x}\right ) \int \frac{x^2 \left (a+b \cosh ^{-1}(c x)\right )}{\sqrt{-1+c x} \sqrt{1+c x}} \, dx}{c^2 d \sqrt{d-c^2 d x^2}}-\frac{\left (b \sqrt{-1+c x} \sqrt{1+c x}\right ) \int \frac{x^3}{-1+c^2 x^2} \, dx}{c d \sqrt{d-c^2 d x^2}}\\ &=\frac{x^3 \left (a+b \cosh ^{-1}(c x)\right )}{c^2 d \sqrt{d-c^2 d x^2}}+\frac{3 x (1-c x) (1+c x) \left (a+b \cosh ^{-1}(c x)\right )}{2 c^4 d \sqrt{d-c^2 d x^2}}-\frac{\left (3 \sqrt{-1+c x} \sqrt{1+c x}\right ) \int \frac{a+b \cosh ^{-1}(c x)}{\sqrt{-1+c x} \sqrt{1+c x}} \, dx}{2 c^4 d \sqrt{d-c^2 d x^2}}+\frac{\left (3 b \sqrt{-1+c x} \sqrt{1+c x}\right ) \int x \, dx}{2 c^3 d \sqrt{d-c^2 d x^2}}-\frac{\left (b \sqrt{-1+c x} \sqrt{1+c x}\right ) \operatorname{Subst}\left (\int \frac{x}{-1+c^2 x} \, dx,x,x^2\right )}{2 c d \sqrt{d-c^2 d x^2}}\\ &=\frac{3 b x^2 \sqrt{-1+c x} \sqrt{1+c x}}{4 c^3 d \sqrt{d-c^2 d x^2}}+\frac{x^3 \left (a+b \cosh ^{-1}(c x)\right )}{c^2 d \sqrt{d-c^2 d x^2}}+\frac{3 x (1-c x) (1+c x) \left (a+b \cosh ^{-1}(c x)\right )}{2 c^4 d \sqrt{d-c^2 d x^2}}-\frac{3 \sqrt{-1+c x} \sqrt{1+c x} \left (a+b \cosh ^{-1}(c x)\right )^2}{4 b c^5 d \sqrt{d-c^2 d x^2}}-\frac{\left (b \sqrt{-1+c x} \sqrt{1+c x}\right ) \operatorname{Subst}\left (\int \left (\frac{1}{c^2}+\frac{1}{c^2 \left (-1+c^2 x\right )}\right ) \, dx,x,x^2\right )}{2 c d \sqrt{d-c^2 d x^2}}\\ &=\frac{b x^2 \sqrt{-1+c x} \sqrt{1+c x}}{4 c^3 d \sqrt{d-c^2 d x^2}}+\frac{x^3 \left (a+b \cosh ^{-1}(c x)\right )}{c^2 d \sqrt{d-c^2 d x^2}}+\frac{3 x (1-c x) (1+c x) \left (a+b \cosh ^{-1}(c x)\right )}{2 c^4 d \sqrt{d-c^2 d x^2}}-\frac{3 \sqrt{-1+c x} \sqrt{1+c x} \left (a+b \cosh ^{-1}(c x)\right )^2}{4 b c^5 d \sqrt{d-c^2 d x^2}}-\frac{b \sqrt{-1+c x} \sqrt{1+c x} \log \left (1-c^2 x^2\right )}{2 c^5 d \sqrt{d-c^2 d x^2}}\\ \end{align*}

Mathematica [A]  time = 1.4341, size = 192, normalized size = 0.85 \[ \frac{-4 a c d x \left (c^2 x^2-3\right )+12 a \sqrt{d} \sqrt{d-c^2 d x^2} \tan ^{-1}\left (\frac{c x \sqrt{d-c^2 d x^2}}{\sqrt{d} \left (c^2 x^2-1\right )}\right )+b d \left (8 c x \cosh ^{-1}(c x)-\sqrt{\frac{c x-1}{c x+1}} (c x+1) \left (8 \log \left (\sqrt{\frac{c x-1}{c x+1}} (c x+1)\right )+6 \cosh ^{-1}(c x)^2-\cosh \left (2 \cosh ^{-1}(c x)\right )+2 \cosh ^{-1}(c x) \sinh \left (2 \cosh ^{-1}(c x)\right )\right )\right )}{8 c^5 d^2 \sqrt{d-c^2 d x^2}} \]

Warning: Unable to verify antiderivative.

[In]

Integrate[(x^4*(a + b*ArcCosh[c*x]))/(d - c^2*d*x^2)^(3/2),x]

[Out]

(-4*a*c*d*x*(-3 + c^2*x^2) + 12*a*Sqrt[d]*Sqrt[d - c^2*d*x^2]*ArcTan[(c*x*Sqrt[d - c^2*d*x^2])/(Sqrt[d]*(-1 +
c^2*x^2))] + b*d*(8*c*x*ArcCosh[c*x] - Sqrt[(-1 + c*x)/(1 + c*x)]*(1 + c*x)*(6*ArcCosh[c*x]^2 - Cosh[2*ArcCosh
[c*x]] + 8*Log[Sqrt[(-1 + c*x)/(1 + c*x)]*(1 + c*x)] + 2*ArcCosh[c*x]*Sinh[2*ArcCosh[c*x]])))/(8*c^5*d^2*Sqrt[
d - c^2*d*x^2])

________________________________________________________________________________________

Maple [B]  time = 0.306, size = 445, normalized size = 2. \begin{align*} -{\frac{{x}^{3}a}{2\,{c}^{2}d}{\frac{1}{\sqrt{-{c}^{2}d{x}^{2}+d}}}}+{\frac{3\,ax}{2\,d{c}^{4}}{\frac{1}{\sqrt{-{c}^{2}d{x}^{2}+d}}}}-{\frac{3\,a}{2\,d{c}^{4}}\arctan \left ({x\sqrt{{c}^{2}d}{\frac{1}{\sqrt{-{c}^{2}d{x}^{2}+d}}}} \right ){\frac{1}{\sqrt{{c}^{2}d}}}}+{\frac{3\,b \left ({\rm arccosh} \left (cx\right ) \right ) ^{2}}{4\,{c}^{5}{d}^{2} \left ({c}^{2}{x}^{2}-1 \right ) }\sqrt{-d \left ({c}^{2}{x}^{2}-1 \right ) }\sqrt{cx-1}\sqrt{cx+1}}+{\frac{b{\rm arccosh} \left (cx\right ){x}^{3}}{2\,{c}^{2}{d}^{2} \left ({c}^{2}{x}^{2}-1 \right ) }\sqrt{-d \left ({c}^{2}{x}^{2}-1 \right ) }}-{\frac{b{x}^{2}}{4\,{d}^{2}{c}^{3} \left ({c}^{2}{x}^{2}-1 \right ) }\sqrt{-d \left ({c}^{2}{x}^{2}-1 \right ) }\sqrt{cx-1}\sqrt{cx+1}}-{\frac{b{\rm arccosh} \left (cx\right )}{{c}^{5}{d}^{2} \left ({c}^{2}{x}^{2}-1 \right ) }\sqrt{-d \left ({c}^{2}{x}^{2}-1 \right ) }\sqrt{cx-1}\sqrt{cx+1}}-{\frac{3\,b{\rm arccosh} \left (cx\right )x}{2\,{d}^{2}{c}^{4} \left ({c}^{2}{x}^{2}-1 \right ) }\sqrt{-d \left ({c}^{2}{x}^{2}-1 \right ) }}+{\frac{b}{8\,{c}^{5}{d}^{2} \left ({c}^{2}{x}^{2}-1 \right ) }\sqrt{-d \left ({c}^{2}{x}^{2}-1 \right ) }\sqrt{cx-1}\sqrt{cx+1}}+{\frac{b}{{c}^{5}{d}^{2} \left ({c}^{2}{x}^{2}-1 \right ) }\sqrt{-d \left ({c}^{2}{x}^{2}-1 \right ) }\sqrt{cx-1}\sqrt{cx+1}\ln \left ( \left ( cx+\sqrt{cx-1}\sqrt{cx+1} \right ) ^{2}-1 \right ) } \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(x^4*(a+b*arccosh(c*x))/(-c^2*d*x^2+d)^(3/2),x)

[Out]

-1/2*a*x^3/c^2/d/(-c^2*d*x^2+d)^(1/2)+3/2*a/c^4*x/d/(-c^2*d*x^2+d)^(1/2)-3/2*a/c^4/d/(c^2*d)^(1/2)*arctan((c^2
*d)^(1/2)*x/(-c^2*d*x^2+d)^(1/2))+3/4*b*(-d*(c^2*x^2-1))^(1/2)*(c*x-1)^(1/2)*(c*x+1)^(1/2)/d^2/c^5/(c^2*x^2-1)
*arccosh(c*x)^2+1/2*b*(-d*(c^2*x^2-1))^(1/2)/d^2/c^2/(c^2*x^2-1)*arccosh(c*x)*x^3-1/4*b*(-d*(c^2*x^2-1))^(1/2)
/d^2/c^3/(c^2*x^2-1)*(c*x+1)^(1/2)*(c*x-1)^(1/2)*x^2-b*(-d*(c^2*x^2-1))^(1/2)*(c*x-1)^(1/2)*(c*x+1)^(1/2)/d^2/
c^5/(c^2*x^2-1)*arccosh(c*x)-3/2*b*(-d*(c^2*x^2-1))^(1/2)/d^2/c^4/(c^2*x^2-1)*arccosh(c*x)*x+1/8*b*(-d*(c^2*x^
2-1))^(1/2)/d^2/c^5/(c^2*x^2-1)*(c*x-1)^(1/2)*(c*x+1)^(1/2)+b*(-d*(c^2*x^2-1))^(1/2)*(c*x-1)^(1/2)*(c*x+1)^(1/
2)/d^2/c^5/(c^2*x^2-1)*ln((c*x+(c*x-1)^(1/2)*(c*x+1)^(1/2))^2-1)

________________________________________________________________________________________

Maxima [F(-2)]  time = 0., size = 0, normalized size = 0. \begin{align*} \text{Exception raised: ValueError} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x^4*(a+b*arccosh(c*x))/(-c^2*d*x^2+d)^(3/2),x, algorithm="maxima")

[Out]

Exception raised: ValueError

________________________________________________________________________________________

Fricas [F]  time = 0., size = 0, normalized size = 0. \begin{align*}{\rm integral}\left (\frac{{\left (b x^{4} \operatorname{arcosh}\left (c x\right ) + a x^{4}\right )} \sqrt{-c^{2} d x^{2} + d}}{c^{4} d^{2} x^{4} - 2 \, c^{2} d^{2} x^{2} + d^{2}}, x\right ) \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x^4*(a+b*arccosh(c*x))/(-c^2*d*x^2+d)^(3/2),x, algorithm="fricas")

[Out]

integral((b*x^4*arccosh(c*x) + a*x^4)*sqrt(-c^2*d*x^2 + d)/(c^4*d^2*x^4 - 2*c^2*d^2*x^2 + d^2), x)

________________________________________________________________________________________

Sympy [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \frac{x^{4} \left (a + b \operatorname{acosh}{\left (c x \right )}\right )}{\left (- d \left (c x - 1\right ) \left (c x + 1\right )\right )^{\frac{3}{2}}}\, dx \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x**4*(a+b*acosh(c*x))/(-c**2*d*x**2+d)**(3/2),x)

[Out]

Integral(x**4*(a + b*acosh(c*x))/(-d*(c*x - 1)*(c*x + 1))**(3/2), x)

________________________________________________________________________________________

Giac [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \frac{{\left (b \operatorname{arcosh}\left (c x\right ) + a\right )} x^{4}}{{\left (-c^{2} d x^{2} + d\right )}^{\frac{3}{2}}}\,{d x} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x^4*(a+b*arccosh(c*x))/(-c^2*d*x^2+d)^(3/2),x, algorithm="giac")

[Out]

integrate((b*arccosh(c*x) + a)*x^4/(-c^2*d*x^2 + d)^(3/2), x)